,

Effects of Pronuclear Age for Freezing in Mouse Embryos Survival and Development in Vitro after Cryopreservation

H.S. Kim, B.Y. Ryu, S.K. Oh, C.S. Suh*, S..H Kim*, Y.M. Choi*, J.G. Kim*, S.Y. Moon* and J.Y. Lee*

Institute of Reproductive Medicine and Population, Medical Research Center

Department of Obstetrics and Gynecology*, College of Medicine,

Seoul National University, Seoul, Korea

= Abstract =

This study was designed to evaluate the influence of pronuclear age on the survival and post-thawing development after cryopreservation of mouse embryos.

Freezing and thawing were performed in the different pronuclear stages of mouse embryos after IVF. Embryos were obtained from F₁ hybrid mice and classified into 4 groups according to the pronuclear stage (6hr, 9hr, 12hr and 15hr after insemination). Pronuclear ova were slowly cooled in a biological freezer using 1.5M 1,2-propanediol and 0.1M sucrose as cryoprotectant. Thawing was done at room temperature and 1,2-propanediol was removed by multi-step dilutions. Both frozen-thawed embryos and control fresh embryos were cultured in vitro in Ham's F-10 medium supplemented with 4mg/ml BSA.

In control group, the development rate after 48hr was 99.3%, and the complete hatching rate after 144hr was 61.3%. In experimental groups, the survival rate after thawing was 95.4% in 6hr, 88.7% in 9hr, 75.2% in 12hr and 62.4% in 15hr after insemination, the development rate after 48hr was 61.1, 77.0, 67.0 and 79.6%, respectively, and the complete hatching rate after 144hr was 25.7, 43.7, 42.2 and 60.0%, respectively. The survival rate in 15hr was significantly lower (p<0.05) compared with other groups. In vitro development rates after 48hr were similar in all groups, but complement hatching rate was significantly lower (p<0.05) in 6hr group.

In conclusion, cryopreservation of mouse pronuclear ova with 2 distinct pronuclei (9hr and 12hr groups) showed better results after thawing compared with early (6hr group) or late pronuclear ova just prior to cleavage (15hr group).

(Fehilly et al., 1985; Al-Hasani et al., 1987;

Siebzehnruebl, 1989).

(Mandelbaum et al., 1988; Trounson et

al., 1988; Wilson et al., 1989; Macas et al., 1991). 4

dimethyl sulfoxide (DMSO) (Fehilly et al., 1985)

,

```
4
                                         1,2-propanediol ( PROH )
    ( Lassalle et al., 1985 )
                                                      . Van der Auwera (
1990 )
        PROH
                ( Testart et al., 1986; Fugger et al., 1988; Cohen et al., 1988 ).
                                                                           (
Schatten et al., 1985; Wright et al., 1990 ).
                                                2
                        가
                  가
1.
                                  ( C57BL
                                             × CBA
                                                               6-8
                                                               가
    12
                                                                           (
    : 12
                                                          7.5 I.U. pregnant
              )
mare's serum gonadotropin ( PMSG, Sigma )
                                                                      48
  5 I.U. human chorionic gonadotropin ( hCG, Sigma )
```

2.

. 12

Ham's F-10

. 26G 5% CO₂가 37

가 10 . 0.5ml 0.4% BSA (

bovine serum albumin)가 가 Ham's F-10 10

.

HCG 14

Ham's F-10 0.4% BSA가 가 . .

26G - .

Ham's F-10 0.4% BSA가 2ml

(Falcon #3037) .

 $10^{5} - 10^{6} / m1$

•

6

6 (Fig. 1),

9 (Fig. 2), 12 (

Fig. 3) 15 (Fig. 4)

16 2 가 (Table 1).

3.

20% FBS (fetal bovine serum)가 D-PBS

1.5M PROH 0.1M sucrose 가 .

10 0.25ml plastic straw

-7 5 1 10 -7 -2 (seeding) . -7 -30 -0.3 - 30 10 20 straw . Straw straw 20% FBS가 D-PBS 1.0M PROH 0.2M sucrose 5 , 0.5M PROH 0.2M sucrose 0.2M sucrose 5 5 . 가 , 0.4% BSA가 가 Ham's F-10 24 4. student's t-test , p

(Kryo - 10, Planer)

7 10

0.05

6 , 9 , 12 , 15

100% 95.36%, 88.73%, 75.17%, 62.42%

(Table 2). (p<0.05).

24 2 100%,

6 93.75%, 9 97.62%, 12 88.07% 15 98.98%

가 . 48

4 99.30%, 6 61.11%, 9

76.98%, 12 66.97% 15 79.59%

(Table 3, p < 0.05).

96 95.77%, 6

49.30%, 9 73.01%, 12 70.04% 15 90.82% 48

61.27%, 25.69%, 43.05%, 42.20%, 60.20%

(Table 4). 6 가

•

•

.

(Testart et al., 1986 ; Fugger et al., 1988 ;

Cohen et al., 1988).

(Schatten et al., 1985; Wright et al., 1990).

. 2

6 , 9 , 12 15 100% 15 (62.42%, p < 0.05).Chedid (1992) 1 24 2 가 48 (p < 0.05)). 1 2 (Rugh, 1990) 4 15 가 12 6 DNA 가 DNA Balakier (1993)

(73.01% / 70.64%)

9

(43.65% / 42.20%)

12

가

가

PROH 가

2

가 가

1. 6 , 9 , 12 , 15

100% 95.36%, 88.73%, 75.17%, 62.42%

2

100%,

6 93.75%, 9 97.62%, 12 88.07% 15 98.98%

2.

24

48

4

99.30%, 6 61.11%, 9 76.98%, 12 66.97% 15 79.59%

4. 96 95.77%, 6

43.75%, 9 73.01%, 12 70.04% 15 90.82% 48 .

(6) 2 (15) (9 , 12)7} .

Al-Hasani S, Diedrich K, van der Van H, Reinecke A, Hartje M, Krebs D:

Cryopreservation of human oocytes. Hem Reprod 1987, 2, 695-700.

Balakier H, MacLusky NJ, Casper RF: Characterization of the first cell cycle in human zygotes: implications for cryopreservation. Fertil Steril 1993, 59, 359-365.

Chedid S, Van den Abbeel E, Van Steirteghem AC: Effects of cryopreservation on survival and development of interphase- and mitotic-stage 1-cell mouse embryos.

Hum Reprod 1992, 7, 1451-1456.

Cohen J, De vane G, Fehilly C, Kort H, Massey J, Turner T: Cryopreservation of zygotes and early cleaved human embryos. Fertil Steril 1988, 49, 283-289.

Fehilly CB, Cohen J, Simons RF, Fishel SB, Edwards RG: Cryopreservation of cleaving embryos and expanded blastocysts in the human: a comparative study. Fertil Steril 1985, 44, 638-643.

Fugger EF, Bustillo M, Katz LP, Dorfman AD, Bender SD, Schulman JD:

- Embryonic development and pregnancy from fresh and cryopreserved sibling pronucleate human zygotes. Fertil Steril 1988, 50, 273-278.
- Lassalle B, Testart J, Renard J: Human embryos features that influence the success of cryopreservation with the use of 1,2-propanediol. Fertil Steril 1985, 44, 645-651.
- Macas E, Xie M, Keller PJ, Imthurn B, Ruelicke T: Developmental capacities of two-cell mouse embryos frozen by three methods. J IVF & ET 1991, 8, 208-212.
- Mandelbaum J, Junca AM, Plachot M, Alnot MD, Salat-Baroux J, Alvarez S, Tibi C, Cohen J, Debache C, Tesquier L: Cryopreservation of human embryos and oocytes. Hum Reprod 1988, 3, 117-119.
- Rugh R: Normal development of the mouse. The mouse, New York: Oxford University Press, 1990, 44-101.
- Schatten G, Simerly C, Schatten H: Micrituble configurations during fertilization, mitosis, and early development in the mouse and the requirement for egg microtuble-mediated motility during mammalian fertilization. Proc Natl Acad Sci USA 1985, 82, 4152-4156.
- Siebzehnruebl ER: Cryopreservation of gametes and cleavage stage embryos.

 Hum Reprod 1989, 4, 105-110.
- Testart J, Lassalle B, Belaisch-Allart J, Hazoult A, Forman R, Rainborn JD,

 Frydman R: High pregnancy rate after early human embryo freezing. Fertil

 Steril 1986, 46, 268-272.
- Trounson A, Peura A, Kirby C: Ultrarapid freezing of early cleavage stage human

embryos and eight-cell mouse embryos. Fertil Steril 1988, 49, 822-826.

Van der Auwera I, Cornillie F, Ongkowidjojo R, Pijnenborg R, Koninckx PR:

Cryopreservation of pronucleate mouse ova: slow versus ultrarapid freezing.

Hum Reprod 1990, 5, 619-621.

Wilson L, Quinn P: Development of mouse embryos cryopreserved by an ultra-rapid method of freezing. Hum Reprod 1989, 4, 86-90.

Wright G, Wiker S, Elsner C, Kort H, Massey J, Mitchell D, Toledo A, Cohen J:

Observations on the morphology of pronuclei and nucloli in human zygotes and implications for cryopreservation. Hum Reprod 1990, 5, 109-115.

Table 1. Cell division in mouse zygotes after insemination

	16hr	16.5hr	17hr	17.5hr	18hr	18.5hr
2PN	71	50	34	11	5	0
2-cell	3	24	40	63	69	74

Table 2. Number of morphologically intact embryos after freezing and thawing of 6hr, 9hr, 12hr and 15hr after insemination

	6hr	9hr	12hr	15hr
No. of frozen embryos	151	142	145	157
No. of recovered embryos (%)	151 (100)	142 (100)	145 (100)	157 (100)
No. of survived embryos (%)	144 (95.36)	126 (88.73)	109 (75.17)	98 [*] (62.42)

^{*;} p<0.05

Table 3. Development rates of control and experimental groups after 24hr and 48hr in-vitro culture

	control	6hr	9hr	12hr	15hr
No. of 2-cell	142	135	123	96	97
embryos at 24hr (%)	(100)	(93.75)	(97.62)	(88.07)	(98.98)
No. of 4-cell	141	88*	97 [*]	73 [*]	78^*
embryos at 48hr (%)	(99.30)	(61.11)	(76.98)	(66.97)	(79.59)

^{*;} p<0.05

Table 4. Development rates of control and experimental groups after 96hr and 144hr in-vitro culture

	control	6hr	9hr	12hr	15hr
No. of	136	71*	92*	77*	89
blastocysts	(95.77)	(49.30)	(73.01)	(70.64)	(90.82)
at 96hr (%)					

No. of complete 87 37^{**} 55^{**} 46^{**} 59 hatched embryos (61.27) (25.69) (43.65) (42.20) (60.02) at 144hr (%)

*, **; p<0.05

Fig 1. 1-cell stage embryos collected 6hours after insemination (X10)

Fig 2. 1-cell stage embryos collected 9hours after insemination (X10)

Fig 3. 1-cell stage embryos collected 12hours after insemination (X20)

Fig 4. 1-cell stage embryos collected 15hours after insemination (X20)